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~ATI()~AL ADVISORY ~OMMITTE~ FOR A~RoNAuTI(js

TECHNICAL MEMORANDUM NO. 861

COMPRESSION STRUTS

WITH NONPROGRESSIVELY VARIABLE MOMENT OF INERTIA*

By 3. Radomski

The buckling failure conditions for a bar with non-
progressively variable moment of inertia Jn, although
constant over length In, are developed.

For two cases: 1) bar consisting of two lengths tl
and la with JI and J= ; 2) bar consisting of three
lengths II, 22 and again 11, with Jl, J2 and again
JI (symmetrical with respect to center) , gr~phs are
plotted for different ratios Jl: Ja over “ 12, show-
ing a mean mornsnt of inertia Jm, with the a~~ of which
the buckling strength pk of the bar with sudden varia-
tions of the moment of inertia can be represented in the
Euler form.

I. INTRODUCTION

The following investigation is only valid in the
Euler range, that” is, only when

Pk is buckling load at failure, fmin) ininimum section.

In addition, it is assumed that the moment’s of inertia at
the points of sudden variations are effective in their
full magnitude immediately before and after the jump,
whereas in reality thereis a brief compensating zone for
welded and a long’er zone for riveted bars.

For the rest, the assumptions are that the bar was
—..

*lJKnickstabe mit sprungweise v~~nderlichem Tragheits- ‘
moment. II Luftfahrtforschung, vol. 14, no. 9 , September “
20, 1937, pp. 438-443.
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.

-Previously exactly straight aild perfectly pin-~ointed,
~hat the effect of the cross force and the change in
buckling length due to axial load and floxurc is negli-
gibly small aild that the differential equation of the
elastic line N J y!! = - j~~ is applicable.

II. GEN3!RAL DERIVATION

Consider afi originally straight bar, consisting of
n joined parts stiff in ‘~ending with n different - but
alon~ the lengths tn constant - moments of inertia.
axial load P

The
has an eccentricity e of finite magni-

t.ud c , small iil relation to the cross-sectional dimensions,
that has no effect on the result of the investigation and
is, for the sake of simplicity, constant (fig. 2).

With:na length lr t]le differential equation of t-he
elastic line

is applicable, which through vr = e + yr reduces to:

E Jr vrtt = -F vr (1)

The general solution of ~-nis eo~lation is as known:
..

P vr = Ar cos ‘@r + Br sin Wr (2)

with Ar and Br as integration constants, while

~r (3) andC!)r. -
r-

E Jr
kr = -~

r
(4)

For each of the n lengths an equation corresponding to
equation (2) can be esta-al.ished, with 2 n temporarily
unknown integration constants, for whose determj.nation
the following conditions are availa31e:

1) 1 time yl = () for xl = O

2)n- 1 time Yr_l = Yr for Xr_l = Ir–l and Xr = O

3)n- 1 ti~e Y’r–l = yrlforxr_l = lr_l,and Xr = O

4) 1 time Yn=o for Xn ‘tn
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or altogether 2 n -. conditions from which the values A
and B may be obtained. The differentiation of equation
(2) gives:

,.

kr P Vrl = -Ar Sin ~r + Br COs Qr (5)

and the differentiation of equation (5) with considera-
tion of equation (4) gives:

kr2 P Vrf! = -Ar cos cpr - Br sin cpr (6)

i.e., IIJr Vrlf = -P Vr,

Thenthe determinative equations read with

(7)

as follows:

1. Al = P e

2. Ar-l cos ar-l + Br-l sin ar-l - Ar = O

kr-l
3. -Ar_l sin ar-l + Br-l cos Ctr-l - ‘— Br = O

‘r

4. An cos an + Bn sin CL1l= P e

The equation scheme is as follows:

The constants Ar and Br are obtained as quotients

-of two determinants and may be written in equation (2).
The bar then fails under a buckling load if the right-hand
side of equation (2) becomes great beyond all limits.
Since Cos Vr and sin ~r are consistently < 1, Ar. and

B= must become very great in order that P Vr goes beyond
all limits.

Now

.— .— —–
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Equation System

cos ar sin % -1

kn-,2
-sin‘r COS ‘r -~

COS C$.+1sinCln-1 -1

‘n-1
-~i” %+1 Cos an-l

--
-%

1
cos an sin an =p e

.
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hr..= ~

N
(8)

Since Z as” the sum of the products of kr . sin ~r,
Cos a=, P, and e cannot go beyond all limits for finite
values of P, e, Jr , and lr, there” remains as criteri-
on for the buckling of the bar

N--+-o (9)

No buckling occurs for values N>o. The bar buckles at
N=o. Here N is the determinant of the previously
cited equation system and is of the (2 n)th degree for a
bar of n different lengths.

Examples: For the cases n = 2 to n = 5 tho SOIU-
tions of the determinants afford the following buckling
co]~ditions:

1.n=2

which, simplified, gives with vrl = 1 - ar cot ~r

(lo)

(11)

2.n=3

kl k ~
klcotaacota~ +cotal lizcot a3+cotu1cot~2k3 - y 20 (12)

2

For the symmetrical case 11 = 13 and JI = J= the ex-
pression reduces to

k2 %>02cot~lcota2+ cot ‘al—-F_
kl

(13)
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3,n=4

kz k4
+ kl cot aa cot (X3 cot a+ - cot al —

%

ICI k~
+ cot ccl cot as cot CIq kq - cot (X4—— ?0 (14).

k2

4.n=5

k~ IC5
+ k1cota2cota3 cotct4cota5- cotalcot~——-

%

k~ k5
+ cotcllcota2 k3cota4cota5- cotm1cota4——

k3

k2 k4
+ cotctlcota2cota3 k4cota5- cotc11cota5—

k3.

q 1.C5
-t cotulcota2cot~ cot& k5-cot~cota3-——

k4

kl k~
- cotqcota4—-

k~

kl &
- cot~cota5--—

k~

kl k~
- cot@ cota4--—

1s2
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kl.”k4
cota3cotct5—

%?

kl k~
-’ cota4cota5—

ka

‘7

,.

+V%%20.—
k2 IC4

(15)

The mathematical solution of equations and (15)
is already quite elaborate and unusually sensitive, be-
cause the result appears as small difference of great
numbers. As n increases the terms become consistently
more extensive and so become void as far as practical
application is concerned.

As it is impossible to express explicitly the buck-
ling load i? contained in a and k from the preceding
expressions, a method covering the usual cases of n = 2
and n=3 by means of a substitute inertia moment is
given.

III. THE SUBSTITUTE MOLIENT OF INERTIA

QQ 1 (fig. 5).-
tl

The bar consists of n=2 lengths
and Zz so that il + 12 = t, “with the moments of

inertia J1 and J2 (fig. 3) . Force Pn=a is the ulti-
mate lmckling load of the bar and complies with equation
(lo)

kl cot CL2 + k2 cot al = 0.

Then visualize a bar of the same length 1 hut constant
moment of inertia Jm over the entire length, whereby,
respectively,

Jl > Jm > Ja and Jl < Jm < J2

Jm is to be sue-h as to comply with

(16)
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With the simplified relation P in
tion (17) gives:

Then

(17)

place of Pn=2, equa-

(18)

(19)

Having recourse to equation (18) transforms equation
(10) into:

.f

J1
-- cot a2 = - cot al
4

(20)

Herefrom the correlated CL2 and ZI : 12 can be so
determined for a constant ratio Jl :J2 and a variable

that equation (20) is fulfilled.al

Because it is:

21 al ~

J
—=.. —=~
Z2 a2 Jz

and results in
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after which:
,,,,

f

Jm al ~
—=—-
J1 IT ~1

,,

(21)

(22)

Then the values = JP? can he plotted for the
/— 2

parameter
p ‘J”::

against the abscissa Zl: t and the

value p interpolated for the individual case with def-
inite p and Zl: t. Assuming J~>J2, B remains > 1
and

p=

all

kl

the buckling load follows at:

E J2 n2
P=

22
$2 (23)

The boundary curve of these curve systems follo’ivsat
Jl

~--’ wherein J2 is finite and J1 exceeds

boundaries. Then it affords

From the transformed equation (10)

follows the condition for the boundary curve:

II tan Qa 21 1——= - ——— or —=
22

+—
a~ 1 V21

— -.
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It exists only for values

l-r
~< (X2< ‘1-r

Case 2 - The bar consists of n=3__.A parts tl, ta,
and tl , so that 21 + 12+ 11 = t and of the inertia

mo:iemts Jl, J2, and Jl symmetrical to the center (fig.

).~’ The force Pn=~ is the buckling load,at failure and

complies with equation (13) :

Agai Ii a m~arL inertia moment Jm is, introduced, so
tit~t:

(24)

As a, result, equations (18) and (19) are applicable again
a.a3 equation (13) “becomes:

(25)

~ro~ t~lis it is possibl,e to so determine for a con-
sta,nt ratio Jl: J2 and a variable angle al the corre-

lated angle az and the ratio tl: t2, that equation
(25) is complied wi~h,

For it is:

11 ‘Zl /51
--=— ,/_=c”

12 a2~ Jz

and one obtains

11 E t~ 1
—=— and — .

L 2C+1 1 26+1

IllI
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and as before:
.

“-T
.—

Jm al t

“r’

J~ aa z—= —— and =——
J1 m 21 J2 ~ Za

11

,..

For the symmetrically stepped bar two cases

a) JI > J2 and b) JZ>JI.

must be distinguished.

a) (fig. 6) J1 > J2

c- E7-

are chosen as parameters of the curves.
follows at

The buckling load

(26)

For the boundary curve with parameter

f

Jl
Pa =

~ ‘--5”

where J2 is finite and JI m we obtain9

rE JI 1
kl = ——>m, ~l.-L_ >0, and al cot’ ctl->l

P kl

E,quation (13) may also be written as:

tl Zl= 2
or + 2 cot a2 — aa+ 1 - —2a2 = O

7L2 L2-
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ll~cosaa 1
-- - =~~””
a2 sin a2

t
Only positive values of # and a2 being -possible, the

2

negative signs disappear. And the equation of the bound.
ary curve becomes

a,
1 + Cos U2 tl cot——— ~1

2 1— — =— or — =.

a2 sin a2 22 a2

2

b) (fig, 7) Jg >Jl

rJ2
Here pb = —21 is the chosen parameter. Then

J1

f

J~11
pb= ;.21, and the buckling load becomes

If the parameter

(27)
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w~erein JI is finite arid Ja —>m, the buckling load
of the whole’ba’r becomes

1 E JI TT.2
Pk=-——

4 112

because the bar tl may for reasons of symmetry be con-
sidered as being rigidly clamped at 12. For the bound-
ary curve the condition is:

The graphs ensuing therefrom afford the solution of the
buckling loads Pk with the aid of the substitute moments

of inertia, that is

Jm = Jz @2 for case 1

Jm=J2&2’’m2a

Jm=J II It
1 Fg 2b

IV. NOTE CONCERNING THE GRAPHS

Charts 5 to ‘7give the correlated changes in buck-
ling load for different ratios 11: % and 12: t and
different ratios of moments of inertia. They show that
reinforcing or weakening a short ond length of a compres-
sion strut within range

(O < tl:t<O,l or -o< t2: t < 0.1)

causes only a minor change in its buckling load, whereas,
as figures 6 and 7, for example, show, a, cross sectional
change of a short central length already produces a sub-
stantial change in the buckling load. They readily show
the effect of local cross-sectional changes and make it
thus possible, even for a given inertia moment and a
stipulated buckling load pk , to determine length and
dimension of the other piece by variation of p and ~1: t.



“14 N. A. C.A. Technical Memorandum No. .861
“.. .

These graphs (figs. 5 to 7’)have the additional charac-
teristic that the value @ equals the parameter p in
the extreme condition tl: t = 1.” “

However, since it is impossible to include all prob-
ablo cases in one graph - for Zl: Z—->l and p > 2.2
tho graphs give no values ~ - the following modified
graphs will be found to be more practical.

Case 1 (fig. 8~..- Y as function of tl: t “for
parameter

substitute moment of inertia:

JI + J2
Jm=_ P

2

buckling load:

E+ J1 + J2

..(2

Case 2a (fi~. 9).- y as function of

the parameter
a

J2
qa’—

substitute inertia moment:

Jl + Ja
Jm = ?’a2

2
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buckling load:
,,.

,. 2“J1+’J2
El-r -.

Ta 2

Case 2b (~ra-oh, fig. 10~ .- Vb as function of

22 : L for parameter

substitute inertia moment:

Jl” + J2
Jm = ?b2

2

buckling load:
JI -i-J2

E n= ——
2

Pk=-
22

Graph 9 loses its clearness when 2i~:~_>~. A

close approximation in the range of 0.9 < 2 11: z < 1
is found in 11’bpplls solution ‘ (cf. “Lectures on Techni-
cal Mechanics,’t vol. III, 7th ed. , p. 384) .

There:

E m2 JI
P~ =

(’211 + ~ Z2)2\
J=

,,..

V. VALIDITY IN TETIJA.JER~S RANGE “

Of course, it is understood that the determination
of the failing load through the substitute moment of in-
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ertia alone is sufficient only when the compression strut
does not fail as a result of local overstressing. In all
cases which fail to satisfy the previously cited condition

the solution of the buckling load pk must be followed

by further investigation, especially if the range of
fmin lies in bay center. The same applies to all struts

with nonprogressively variable moment of inertia that do
not fall in category 1, 2a, or 2b. Concerning the actual
ultimate buckling load pk,Br, it can be stated only for

the time being that

~k,T -<pk,Br,< pk,E

Therein the upper limit ‘k,E is formed by that buckling

load which satisfies the buckling condition N = O with
preservation of E even in the plastic range. The lower
limit Pk,T is obtained as follows:

Determine:

~k E

~i,-Qj = -- (> CTG)
fuin

Then let ak,T denote Tetmajerl-s ultimate buckling stress

at the same point X to which the stress ‘k,E belongs.

Next, let:

Ok,T
‘k,T = ‘k,E ~—

k,E
. .

The actual buckling load ‘k, Br then will lie be-

tween the two limits, because, first, elastic buckling is
ascribed to, the whole strut, while a buckling modulus
T<E exists in the range fmin, and secondly, the

whole strut is given a buckling modulus T<I while T
prevails only in the range of fmin.
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As the buckling modulus T varies with the stress
-only the bucklir.g condition N:O can be investigated
for a predeterminefi buckling load, whereby the buckling
modulus T, which varies in the individual lengths Ini ‘

replaces E. The ultimate buckling load ‘k,Br must be

ascertained by trial., i.e., by determining the buckling
condition N“~o for several different values
p(p~I,T < p ~ pk,E), followed by graphical interpolation.

Translation by J. Vanier,
National Advisory Committeo
for Aeronautics.
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2.2

2.0

1.8

B

1.6

1.4

1.2

l.O
0 .4 .8

Fig. 5

=2.2 ,.

= 2.0

=1.8

= 1.6

=1.5

=1.4

=1.3

=1.2

=1.1

=1.0

11/1

rJm
B‘~

as function of ll:Z or 12 :2 for the parameter

r
~= ~

J2 E J2 m2
Failing load pk =

12 192

Substitute moment of inertia:Jm=J2 @2

Figure 5.- Buckling strut$ with non-progressivelyvariable moment
of inertia; substitute moment of inertia Jm.
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2.0

1.8

Ela

1.6

1.4

1.2

1.01

=2.2

,

= 2.0

=1.8

= 1.6

=1.4

=1.2

=1.0

I?ig.6

/.

E J21T2
Failing 10a& pk = —

12 Ba2

Substitute monent of inertia:Jm=J2 13a2

Figure 6.- Buckling struts with non-progressivelyvariable moment “
of inertia; substitute noment of inertia Jm.
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211/1

.8
2.2 .——.~ ~1 J~

I

/
1.2 -–

‘—---4-

Fig. ?

lr-
12/ 1

fib= A as function of ~2:z or 2 71 :Z for the paraneter
J1

G

J2
pb=

J1

Failing load Pk. E Jlm2

12
&3b2

Substitute moment of inertia:Jm=J1 ~b2

Figure 7.. Buckling struts with non-progressivelyvariable moment
of inertia; substitute moment of inertia Jm.
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I’=T2 = 1.414●.**liriiitfqr 11/ 1–*I and Q-O.
J-.

1.4y–----’T-–-.––––l__ I I

h
——..-.——-.—..—-—.---p+.-=+..- .tT2 -P1 //f
.:1.+ 22 — ,

Lq?+A

.4

‘f4zP

I 1. i
L— .—-. J.-.——— .L_..._ .-L. . . . i.. —-—

&

o .2 .4 .6 .’8 1.’)
21/ 1

J2
Y as function of 11t1 for parameter q =

J1 + J2
2

Substitute moment of inertia:
J1+ J~

Jm = Y2
2

~ ~2 J1 + J2

Buckling 1.~ai Pk = 2 Y212

Figure 8.- Buckling struts with non-progressively variable
moment of insrtia.
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Ya = IE = l.hlh-li~flit for 211/1-1 and

1.2

1.0

.8

Ya

.6

.4

.2

0 .2 .4 .6 .8 1.0
211/1

I’aas function of 21~ : 1 for parameter qa
LIZ

=

J1+ J2
,.

J1+J2 d
Substitute moment of inertia: Jm = - z 2va2

.T1+J2
l?TT2 —
u,!

Buckling load F’k= “ 2 ya2
12

Figure 9.- Buckling struts with
moment of inertia

non-progressively variable
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Vb=ti= 1.414....limitfor 1~/ Z+1 an~ qb+~

I L..2. –-4<–2 .-A+– ?.+-l

ill I

L!?....- i.. ._.._..L—..___L..._._

J-z

.-..——.--l—-..-—

-———.—

..--—... J

I

—----.—.

——.

1
I——.—-

() .2 .4 .F, .8 1.0
12/1

.

Yb as function of 22. 1 for parameter qb=
“1

J1+ J2
2

Jl + J2
Substitute moment of inertia: JIQ= Yb2

2
~mz J1+J2

Buckling 1oal ~ = 2 Yb2
72

Figure 10.- Buckling struts with non-progressivelyvariable
moment of inertia.
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